Cookie policy: This site uses cookies (small files stored on your computer) to simplify and improve your experience of this website. Cookies are small text files stored on the device you are using to access this website. For more information on how we use and manage cookies please take a look at our privacy and cookie policies. Some parts of the site may not work properly if you choose not to accept cookies.

sections
 

data warehousing

Results 1 - 25 of 135Sort Results By: Published Date | Title | Company Name
Published By: Amazon Web Services     Published Date: Jul 25, 2018
IDC’s research has shown the movement of most IT workloads to the cloud in the coming years. Yet, with all the talk about enterprises moving to the cloud, some of them still wonder if such a move is really cost effective and what business benefits may result. While the answers to such questions vary from workload to workload, one area attracting particular attention is that of the data warehouse. Many enterprises have substantial investments in data warehousing, with an ongoing cost to managing that resource in terms of software licensing, maintenance fees, operational costs, and hardware. Can it make sense to move to a cloud-based alternative? What are the costs and benefits? How soon can such a move pay itself off? Download now to find out more.
Tags : 
    
Amazon Web Services
Published By: Amazon Web Services     Published Date: Sep 05, 2018
Today’s businesses generate staggering amounts of data, and learning to get the most value from that data is paramount to success. Just as Amazon Web Services (AWS) has transformed IT infrastructure to something that can be delivered on-demand, scalably, quickly, and cost-effectively, Amazon Redshift is doing the same for data warehousing and big data analytics. Amazon Redshift offers a massively parallel columnar data store that can be spun up in just a few minutes to deal with billions of rows of data at a cost of just a few cents an hour. Organizations choose Amazon Redshift for its affordability, flexibility, and powerful feature set: • Enterprise-class relational database query and management system • Supports client connections with many types of applications, including business intelligence (BI), reporting, data, and analytics tools • Execute analytic queries in order to retrieve, compare, and evaluate large amounts of data in multiple-stage operations
Tags : 
    
Amazon Web Services
Published By: Amazon Web Services     Published Date: Sep 05, 2018
Just as Amazon Web Services (AWS) has transformed IT infrastructure to something that can be delivered on demand, scalably, quickly, and cost-effectively, Amazon Redshift is doing the same for data warehousing and big data analytics. Redshift offers a massively parallel columnar data store that can be spun up in just a few minutes to deal with billions of rows of data at a cost of just a few cents an hour. It’s designed for speed and ease of use — but to realize all of its potential benefits, organizations still have to configure Redshift for the demands of their particular applications. Whether you’ve been using Redshift for a while, have just implemented it, or are still evaluating it as one of many cloud-based data warehouse and business analytics technology options, your organization needs to understand how to configure it to ensure it delivers the right balance of performance, cost, and scalability for your particular usage scenarios. Since starting to work with this technolog
Tags : 
    
Amazon Web Services
Published By: SAP     Published Date: May 18, 2014
From its conception, this special edition has had a simple goal: to help SAP customers better understand SAP HANA and determine how they can best leverage this transformative technology in their organization. Accordingly, we reached out to a variety of experts and authorities across the SAP ecosystem to provide a true 360-degree perspective on SAP HANA.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
Download this whitepaper to learn the results of this latest exploration of the emerging world of in-memory database technologies.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
This TDWI Checklist Report presents requirements for analytic DBMSs with a focus on their use with big data. Along the way, the report also defines the many techniques and tool types involved. The requirements checklist and definitions can assist users who are currently evaluating analytic databases and/or developing strategies for big data analytics.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
For years, experienced data warehousing (DW) consultants and analysts have advocated the need for a well thought-out architecture for designing and implementing large-scale DW environments. Since the creation of these DW architectures, there have been many technological advances making implementation faster, more scalable and better performing. This whitepaper explores these new advances and discusses how they have affected the development of DW environments.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
New data sources are fueling innovation while stretching the limitations of traditional data management strategies and structures. Data warehouses are giving way to purpose built platforms more capable of meeting the real-time needs of a more demanding end user and the opportunities presented by Big Data. Significant strategy shifts are under way to transform traditional data ecosystems by creating a unified view of the data terrain necessary to support Big Data and real-time needs of innovative enterprises companies.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
Big data and personal data are converging to shape the internet’s most surprising consumer products. they’ll predict your needs and store your memories—if you let them. Download this report to learn more.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
This white paper discusses the issues involved in the traditional practice of deploying transactional and analytic applications on separate platforms using separate databases. It analyzes the results from a user survey, conducted on SAP's behalf by IDC, that explores these issues.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
The technology market is giving significant attention to Big Data and analytics as a way to provide insight for decision making support; but how far along is the adoption of these technologies across manufacturing organizations? During a February 2013 survey of over 100 manufacturers we examined behaviors of organizations that measure effective decision making as part of their enterprise performance management efforts. This Analyst Insight paper reveals the results of this survey.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools, it management
    
SAP
Published By: SAP     Published Date: May 18, 2014
This paper explores the results of a survey, fielded in April 2013, of 304 data managers and professionals, conducted by Unisphere Research, a division of Information Today Inc. It revealed a range of practical approaches that organizations of all types and sizes are adopting to manage and capitalize on the big data flowing through their enterprises.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
In-memory technology—in which entire datasets are pre-loaded into a computer’s random access memory, alleviating the need for shuttling data between memory and disk storage every time a query is initiated—has actually been around for a number of years. However, with the onset of big data, as well as an insatiable thirst for analytics, the industry is taking a second look at this promising approach to speeding up data processing.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
Over the course of several months in 2011, IDC conducted a research study to identify the opportunities and challenges to adoption of a new technology that changes the way in which traditional business solutions are implemented and used. The results of the study are presented in this white paper.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
Forrester conducted in-depth surveys with 330 global BI decision-makers and found strong correlations between overall company success and adoption of innovative BI, analytics, and big data tools. In this paper, you will learn what separates the leading companies from the rest when it comes to exploiting innovative technologies in BI and analytics, and what steps you can take to either stay a leader or join their ranks.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
This white paper, produced in collaboration with SAP, provides insight into executive perception of real-time business operations in North America. It is a companion paper to Real-time Business: Playing to win in the new global marketplace, published in May 2011, and to a series of papers on real-time business in Europe, Asia-Pacific and Latin America.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: SAP     Published Date: May 18, 2014
Leading companies and technology providers are rethinking the fundamental model of analytics, and the contours of a new paradigm are emerging. The new generation of analytics goes beyond Big Data (information that is too large and complex to manipulate without robust software), and the traditional narrow approach of analytics which was restricted to analysing customer and financial data collected from their interactions on social media. Today companies are embracing the social revolution, using real-time technologies to unlock deep insights about customers and others and enable better-informed decisions and richer collaboration in real-time.
Tags : 
sap, big data, real time data, in memory technology, data warehousing, analytics, big data analytics, data management, business insights, architecture, business intelligence, big data tools
    
SAP
Published By: Pentaho     Published Date: Feb 26, 2015
This TDWI Best Practices report explains the benefits that Hadoop and Hadoop-based products can bring to organizations today, both for big data analytics and as complements to existing BI and data warehousing technologies.
Tags : 
big data, big data analytics, data warehousing technologies, data storage, business intelligence, data integration, enterprise applications
    
Pentaho
Published By: Pentaho     Published Date: Nov 04, 2015
This report explains the benefits that Hadoop and Hadoop-based products can bring to organizations today, both for big data analytics and as complements to existing BI and data warehousing technologies based on TDWI research plus survey responses from 325 data management professionals across 13 industries. It also covers Hadoop best practices and provides an overview of tools and platforms that integrate with Hadoop.
Tags : 
pentaho, analytics, platforms, hadoop, big data, predictive analytics, data management, networking, it management, enterprise applications, data center
    
Pentaho
Published By: TreasureData     Published Date: May 14, 2012
Treasure Data is going to change the way that you think about Big Data and Cloud Data Warehousing. We'd like to get your input on how you see Big Data and Cloud Data Warehousing. Please take our 10 question survey and give us your input.
Tags : 
treasuredata, data warehousing, cloud, big data, solution, data-driven, tables, queries, analytics, infrastructure, storage, billing, visualization
    
TreasureData
Published By: IBM     Published Date: Jul 26, 2017
Every day, torrents of data inundate IT organizations and overwhelm the business managers who must sift through it all to glean insights that help them grow revenues and optimize profits. Yet, after investing hundreds of millions of dollars into new enterprise resource planning (ERP), customer relationship management (CRM), master data management systems (MDM), business intelligence (BI) data warehousing systems or big data environments, many companies are still plagued with disconnected, “dysfunctional” data—a massive, expensive sprawl of disparate silos and unconnected, redundant systems that fail to deliver the desired single view of the business. To meet the business imperative for enterprise integration and stay competitive, companies must manage the increasing variety, volume and velocity of new data pouring into their systems from an ever-expanding number of sources. They need to bring all their corporate data together, deliver it to end users as quickly as possible to maximize
Tags : 
scalability, data warehousing, resource planning
    
IBM
Published By: IBM     Published Date: Jul 26, 2017
To compete in today’s fast-paced business climate, enterprises need accurate and frequent sales and customer reports to make real-time operational decisions about pricing, merchandising and inventory management. They also require greater agility to respond to business events as they happen, and more visibility into business activities so information and systems are optimized for peak efficiency and performance. By making use of data capture and business intelligence to integrate and apply data across the enterprise, organizations can capitalize on emerging opportunities and build a competitive advantage. The IBM® data replication portfolio is designed to address these issues through a highly flexible one-stop shop for high-volume, robust, secure information replication across heterogeneous data stores. The portfolio leverages real-time data replication to support high availability, database migration, application consolidation, dynamic warehousing, master data management (MDM), service
Tags : 
ibm, infosphere, data replication, security, data storage
    
IBM
Published By: Teradata     Published Date: Jan 28, 2015
Althrough Hadoop and related technologies have been with us for several years, most business intelligence (BI) professionals and their business counterparts still harbor a few misconceptions that need to be corrected about Hadoop and related technologies such as MapReduce. This webcast presents the 10 most common myths about Hadoop, then corrects them. The goal is to clarify what Hadoop is and does relative to BI, as well as in which business and technology situations Hadoop-based BI, data warehousing and analytics can be useful.
Tags : 
teradata, business, intelligence, hadoop, data, integration, analytics, mapreduce, warehouse
    
Teradata
Published By: IBM     Published Date: May 16, 2016
Our objective in this Checklist Report is to share best practices that will position the reader to take advantage of a cloud-based data warehousing solution.
Tags : 
ibm, tdwi, checklist report, data warehousing, cloud, analytics, analytic architecture, warehousing, cloud computing
    
IBM
Published By: IBM     Published Date: Apr 18, 2017
Learn from this TDWI paper how right-sized information governance can improve the success of data warehousing or big data analytics initiatives, and how a chief data officer can help organizations to appreciate the value of data and its importance to their decisions and operations.
Tags : 
system integration, data governance, data optimization, data efficiency, data currency, data lineage, data security, data integration
    
IBM
Start   Previous   1 2 3 4 5 6    Next    End
Search      

Related Topics

Add Research

Get your company's research in the hands of targeted business professionals.