Cookie policy: This site uses cookies (small files stored on your computer) to simplify and improve your experience of this website. Cookies are small text files stored on the device you are using to access this website. For more information on how we use and manage cookies please take a look at our privacy and cookie policies. Some parts of the site may not work properly if you choose not to accept cookies.

sections
Home > SAS > OReilly: The Evolution of Analytics: Opportunities and Challenges for Machine Learning in Business
 

OReilly: The Evolution of Analytics: Opportunities and Challenges for Machine Learning in Business

White Paper Published By: SAS
SAS
Published:  Jun 05, 2017
Type:  White Paper
Length:  41 pages

Analytics is now an expected part of the bottom line. The irony is that as more companies become adept at analytics, it becomes less of a competitive advantage. Enter machine learning. Recent advances have led to increased interest in adopting this technology as part of a larger, more comprehensive analytics strategy. But incorporating modern machine learning techniques into production data infrastructures is not easy.Businesses are now being forced to look deeper into their data to increase efficiency and competitiveness. Read this report to learn more about modern applications for machine learning, including recommendation systems, streaming analytics, deep learning and cognitive computing. And learn from the experiences of two companies that have successfully navigated both organizational and technological challenges to adopt machine learning and embark on their own analytics evolution.



Tags :